Effects of muscimol inactivations of functional domains in motor, premotor, and posterior parietal cortex on complex movements evoked by electrical stimulation.
نویسندگان
چکیده
Parietal and frontal cortex are central to controlling forelimb movements. We previously showed that movements such as reach, grasp, and defense can be evoked from primary motor (M1), premotor (PMC), and posterior parietal (PPC) cortex when 500-ms trains of electrical pulses are delivered via microelectrodes. Stimulation sites that evoked a specific movement clustered into domains, which shared a topographic pattern in New World monkeys and prosimian galagos. Matched functional domains in parietal and frontal cortex were preferentially interconnected. We reasoned that matched functional domains form parallel networks involved in specific movements. To test the roles of domains in M1, PMC, and PPC, we systematically inactivated with muscimol domains in one region and determined if functional changes occurred in matching domains in other regions. The most common changes were higher current thresholds for stimulation-evoked movements and shorter, not fully developed, trajectories of movements. Inactivations of an M1 functional domain greatly reduced or abolished movements evoked from the matching domains in PMC or PPC, whereas movements evoked from nonmatching domains remained mostly unaffected. In contrast, inactivating PMC or PPC domains did not consistently abolish the ability to evoke movements from matching M1 domains. However, inactivation of PMC domains suppressed or altered the movements evoked from PPC domains. Thus movement sequences evoked from PMC depend on M1 and movement sequences evoked from PPC depend on both M1 and PMC. Overall, the results support the conclusion that PPC, PMC, and M1 are subdivided into functional domains that are hierarchically related within parallel networks.
منابع مشابه
Effects of Muscimol Inactivations of Functional Domains in Motor, 2 Premotor and Posterior Parietal Cortex on Complex Movements
6 Iwona Stepniewska, Omar A Gharbawie, Mark J Burish and Jon H Kaas 7 8 Department of Psychology, Vanderbilt University, Nashville, TN 37203 9 10 11 12 Text pages: 35 13 Figures:14 14 15 16 17 18 19 Running title: muscimol inactivation of cortical motor domains 20 21 22 23 24 25 26 27 28 29 30 31 32 Correspondence: 33 Iwona Stepniewska, PhD 34 Vanderbilt University, 35 Department of Psychology ...
متن کاملOptical imaging in galagos reveals parietal-frontal circuits underlying motor behavior.
The posterior parietal cortex (PPC) of monkeys and prosimian galagos contains a number of subregions where complex, behaviorally meaningful movements, such as reaching, grasping, and body defense, can be evoked by electrical stimulation with long trains of electrical pulses through microelectrodes. Shorter trains of pulses evoke no or simple movements. One possibility for the difference in effe...
متن کاملTHE EFFECT OF POSTERIOR CEREBRAL PULMONARY DIRECT ELECTRICAL STIMULATION (TDCS) ON IMPROVING SPATIAL, VISUAL, AND VERBAL PERCEPTUAL ABILITIES
Background & Aims: Direct electrical stimulation of the brain is a therapeutic technique that can be effective in improving visual, verbal, and spatial perception. The present study investigated the effect of direct electrical stimulation (tDCS) of the posterior parietal cortex on improving spatial, visual, and verbal perceptual abilities. Materials & Methods: In this quasi-experimental study,...
متن کاملThe Organization and Evolution of Dorsal Stream Multisensory Motor Pathways in Primates
In Prosimian primates, New World monkeys, and Old World monkeys microstimulation with half second trains of electrical pulses identifies separate zones in posterior parietal cortex (PPC) where reaching, defensive, grasping, and other complex movements can be evoked. Each functional zone receives a different pattern of visual and somatosensory inputs, and projects preferentially to functionally ...
متن کاملEffects of local inactivation of monkey medial frontal cortex in learning of sequential procedures.
To examine the role of the medial frontal cortex, supplementary motor area (SMA), and pre-SMA in the acquisition and control of sequential movements, we locally injected muscimol into 43 sites in the medial frontal cortex while monkeys (n = 2) performed a sequential button-press task. In this task, the monkey had to press two of 16 (4 x 4 matrix) buttons illuminated simultaneously in a predeter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 111 5 شماره
صفحات -
تاریخ انتشار 2014